

Acúmulo muito grande de energia que é rapidamente liberada.

A liberação rápida de energia é feita através de vários mecanismos, tais como a formação de uma onda de pressão, lançamento de projéteis, energia térmica, etc.

É a grande quantidade de energia liberada em um curto espaço de tempo que causa os danos provenientes de uma explosão. Muitos danos são devidos a onda de choque (deslocamento de ar) que a explosão causa.

Barotrauma

Texto sobre vítimas de explosão:

http://link.springer.com/content/pdf/10.1007%2Fs00068-006-6039-8.pdf

http://www.springerlink.com/content/634424270242676m/fulltext.pdf

Sobrepressão vs Danos as Estruturas

P	ressure		
psig	kPa	Damage	
0.02	0.14	Annoying noise (137 dB if of low frequency, 10-15 Hz)	
0.03	0.21	Occasional breaking of large glass windows already under strain	
0.04	0.28	Loud noise (143 dB), sonic boom, glass failure	
0.1	0.69	Breakage of small windows under strain	
0.15	1.03	Typical pressure for glass breakage	
0.3	2.07	"Safe distance" (probability 0.95 of no serious damage below this value); projectile limit; some damage to house ceilings; 10% window glass broken	
0.4	2.76	Limited minor structural damage	
0.5-1.0	3.4-6.9	Large and small windows usually shatter; occasional damage to window frames	
0.7	4.8	Minor damage to house structures	
1.0	6.9	Partial demolition of houses, made uninhabitable	
1-2	6.9-13.8	Corrugated asbestos shatters; corrugated steel or aluminum panels. fastenings fail, followed by buckling: wood panels (standard housing), fastenings fail, panels blow in	
1.3	9.0	Steel frame of clad building slightly distorted	
2	13.8	Partial collapse of walls and roofs of houses	
2-3	13.8-20.7	Concrete or einder block walls, not reinforced, shatter	
2.3	15.8	Lower limit of serious structural damage	
2.5	17.2	50% destruction of brickwork of houses	
3	20.7	Heavy machines (3000 lb) in industrial buildings suffer little damage; steel frame buildings distort and pull away from foundations	
3-4	20.7-27.6	Frameless, self-framing steel panel buildings demolished; rupture of oil storage tanks	
4	27.6	Cladding of light industrial buildings ruptures	
5	34.5	Wooden utility poles snap: tall hydraulic presses (40,000 lb) in buildings slightly damaged	
5-7	34,5-48.2	Nearly complete destruction of houses	
7	48.2	Loaded train wagons overturned	
7-8	48.2-55.1	Brick panels, 8-12 in thick, not reinforced, fail by shearing or flexure	
9	62.0	Loaded train boxcars completely demolished	
0	68.9	Probable total destruction of buildings: heavy machine tools (7000 lb) moved and badly damaged, very heavy machine tools (12,000 lb) survive	
00	2068		
	2006	Limit of crater lip	

Pressure			
psig	kPa	Damage	
0.02	0.14	Annoying noise (137 dB if of low frequency, 10-15 Hz)	
0.03	0.21	Occasional breaking of large glass windows already under strain	
0.04	0.28	Loud noise (143 dB), sonic boom, glass failure	
0.1	0.69	Breakage of small windows under strain	
0.15	1.03	Typical pressure for glass breakage	
0.3	2.07	"Safe distance" (probability 0.95 of no serious damage below this value) projectile limit; some damage to house ceilings; 10% window glass broken	
0.4	2.76	Limited minor structural damage	
0.5-1.0	3.4-6.9	Large and small windows usually shatter; occasional damage to window frames	
0.7	4.8	Minor damage to house structures	
1.0	6.9	Partial demolition of houses, made uninhabitable	
1-2	6.9-13.8	Corrugated asbestos shatters; corrugated steel or aluminum panels. fastenings fail, followed by buckling: wood panels (standard housing) fastenings fail, panels blow in	
1.3	9.0	Steel frame of clad building slightly distorted	
2	13.8	Partial collapse of walls and roofs of houses	
2-3	13.8-20.7	Concrete or einder block walls, not reinforced, shatter	
2.3	15.8	Lower limit of serious structural damage	
2.5	17.2	50% destruction of brickwork of houses	
3	20.7	Heavy machines (3000 lb) in industrial buildings suffer little damage; steel frame buildings distort and pull away from foundations	
3-4	20.7–27.6	Frameless, self-framing steel panel buildings demolished; rupture of oil storage tanks	
4	27.6	Cladding of light industrial buildings ruptures	
5	34.5	Wooden utility poles snap; tall hydraulic presses (40,000 lb) in buildings slightly damaged	
5-7	34,5-48.2	Nearly complete destruction of houses	
7	48.2	Loaded train wagons overturned	
7-8	48.2-55.1	Brick panels, 8-12 in thick, not reinforced, fail by shearing or flexure	
9	62.0	Loaded train boxcars completely demolished	
10	68.9	Probable total destruction of buildings: heavy machine tools (7000 lb) moved and badly damaged, very heavy machine tools (12,000 lb) survive	
300	2068	Limit of crater lip	

Fonte:
Annex 5 Determining the damage to humans from explosions using characteristic curves
Industrial Safety Series, Volume 8, 2008, Pages 347-351

Fig. A-5-1. Percentages of exposed population that would die due to lung hemorrhage (black solid lines) as a function of distance (d) (thin grey lines) and TNT equivalent mass (thick grey lines). Taken from [1], by permission.

Fonte:
Annex 5 Determining the damage to humans from explosions using characteristic curves
Industrial Safety Series, Volume 8, 2008, Pages 347-351

Fig. A-5-2. Percentages of exposed population that would die if their body hits a rigid object (black solid lines) as a function of distance (d) (thin grey lines) and TNT equivalent mass (thick grey lines). Taken from [1], by permission.

Estimando distância relativa:

Convertendo a distância relativa em sobrepressão relativa:

Não esqueça dessa conversão!!! (o gráfico é de sobrepressão relativa)

Pressure			
psig	kPa	Damage	
0.02	0.14	Annoying noise (137 dB if of low frequency, 10-15 Hz)	
0.03	0.21	Occasional breaking of large glass windows already under strain	
0.04	0.28	Loud noise (143 dB), sonic boom, glass failure	
0.1	0.69	Breakage of small windows under strain	
0.15	1.03	Typical pressure for glass breakage	
0.3	2.07	"Safe distance" (probability 0.95 of no serious damage below this val projectile limit: some damage to house ceilings: 10% window glass broken	
0.4	2.76	Limited minor structural damage	
0.5-1.0	3.4-6.9	Large and small windows usually shatter; occasional damage to windo	
0.7	4.8	Minor damage to house structures	
1.0	6.9	Partial demolition of houses, made uninhabitable	
1-2	6.9-13.8	Corrugated asbestos shatters; corrugated steel or aluminum panels.	
		fastenings fail, followed by buckling: wood panels (standard housing) fastenings fail, panels blow in	
1.3	9.0	Steel frame of clad building slightly distorted	
2	13.8 Partial collapse of walls and roofs of houses		
2-3	13.8-20.7	Concrete or einder block walls, not reinforced, shatter	
2.3	15.8	Lower limit of serious structural damage	
3	20.7	Heavy machines (3000 lb) in industrial buildings suffer little damage;	
		steel frame huildings distort and pull away from foundation	
J-4	20.7-27.6	Frameless, self-framing steel panel buildings demolished; rupture of oil storage tanks	
4	27.6	Cladding of light industrial buildings ruptures	
5	34.5	Wooden utility poles snap: tall hydraulic presses (40,000 lb) in buildings slightly damaged	
5-7	34,5 - 48.2	Nearly complete destruction of houses	
7	48.2	Loaded train wagons overturned	
7-8	48.2-55.1	Brick panels, 8-12 in thick, not reinforced, fail by shearing or flexure	
9	62.0	Loaded train boxcars completely demolished	
10	68.9	Probable total destruction of buildings: heavy machine tools (7000 lb) moved and badly damaged, very heavy machine tools (12,000 lb) survive	
300	2068	Limit of crater lip	

Exemplo:

One kilogram of TNT is exploded. Compute the overpressure at a distance of 30 m from the explosion.

Solution

The value of the scaling parameter is determined using Equation 6-21:

$$z_e = \frac{r}{m_{\text{TNT}}^{1/3}}$$

= $\frac{30 \text{ m}}{(1.0 \text{ kg})^{1/3}} = 30 \text{ m kg}^{-1/3}$.

From Figure 6-23 the scaled overpressure is 0.055. Thus, if the ambient pressure is 1 atm. then the resulting side-on overpressure is estimated at (0.055)(101.3 kPa) = 5.6 kPa (0.81 psi). From Table 6-9 this overpressure will cause minor damage to house structures.

Massa Equivalente de TNT:

Assumindo que a explosão de um combustível tem comportamento semelhante aquela gerada por TNT, podemos construir uma relação:

$$m_{\rm TNT} = \frac{\eta m \Delta H_{\rm c}}{E_{\rm TNT}},$$

where

 m_{TNT} is the equivalent mass of TNT (mass), η is the empirical explosion efficiency (unitless), m is the mass of hydrocarbon (mass), ΔH_{c} is the energy of explosion of the flammable gas (energy/mass), and E_{TNT} is the energy of explosion of TNT.

 ΔH_c is the energy of explosion of the flammable gas (energy/mass)

Atenção:

passe de moles para massa antes de usar o valor na equação.

Compound	Formula	Energy of explosion (kJ/mol)			
Paraffin hydrocarbons	,				
Methane	CH ₄	-818.7			
Ethane	C ₂ H ₆	-1468.7			
Propane	C_3H_8	-2110.3			
Butane	C ₄ H ₁₀	-2750.2			
Isobutane	C4H10	-2747.9			
Pentane	C ₅ H ₁₂	-3389.8			
Isopentane	C3H12	-3383.3			
2,2-Dimethylpropane	C ₅ H ₁₂	-3382.7			
Hexane	C6H14	-4030.3			
Heptane	C7H16	-4671.0			
2,3-Dimethylpentane	C7H16	-4662.9			
Octane	C_8H_{18}	-5301.8			
Nonane	C9H20	-5948.6			
Decane	$C_{10}H_{22}$	-6588.9			
Olefins					
Ethylene	C ₂ H ₄	-1332.4			
Propylene	C ₃ H ₆	-1959.0			
1-Butene	C ₄ H ₈	-2600.6			
2-Butene	C_4H_8	-2594.1			
1-Pentene	C_5H_{10}	-3239.3			
Acetylenes					
Acetylene	C_2H_2	-1236.0			
Aromatics					
Benzene	C_6H_6	-3210.3			
Toluene	C_7H_8	-3835.1			
o-Xylene	C_8H_{10}	-4467.0			
Cyclic hydrocarbons					
Cyclopropane	C_3H_6	-1998.5			

E_{TNT} is the energy of explosion of TNT.

1120 cal/g = 4686 kJ/kg = 2016 BTU /lb

η is the empirical explosion efficiency (unitless),

Nuvem de Propano: 5% Nuvem de dietil eter: 10% Nuvem de acetileno: 15%

- Sabendo a massa de combustível disponível é possível estimar os danos.
- Sabendo os danos causados é possível estimar a massa de combustível que originou a explosão.

Exemplo:

One thousand kilograms of methane escapes from a storage vessel, mixes with air, and explodes. Determine (a) the equivalent amount of TNT and (b) the side-on peak overpressure at a distance of 50 m from the blast. Assume an explosion efficiency of 2%.

Solution

a. Equation 6-24 applies. The energy of explosion for hexane is found in appendix B. Substituting into Equation 6-24, we obtain

$$m_{\rm TNT} = \frac{\eta m \Delta H_c}{E_{\rm TNT}} = \frac{(0.02)(1000 \text{ kg})(1 \text{ mol}/0.016 \text{ kg})(818.7 \text{ kJ/mol})}{4686 \text{ kJ/kg}} = 218 \text{ kg TNT}.$$

b. Equation 6-21 is used to determine the scaled distance:

$$z_{\rm e} = \frac{r}{m_{\rm TNT}^{1/3}} = \frac{50 \text{ m}}{(218 \text{ kg})^{1/3}} = 8.3 \text{ m/kg}^{1/3}.$$

From Figure 6-23 (or Equation 6-23), the scaled overpressure is 0.25. Thus the overpressure is

$$p_o = p_s p_a = (0.25)(101.3 \text{ kPa}) = 25 \text{ kPa}.$$

This overpressure will demolish steel panel buildings.